AWS 在 Amazon Bedrock 上推出 100 多個新模型、全新強大的推論和數據處理功能,賦能客戶加速採用生成式 AI
- Written by Media Outreach
模型擴展規模空前,並新增推論優化工具及額外的數據功能,為客戶提供了更大彈性和可控性,加速構建和部署生產級生成式 AI
基於 Amazon Bedrock 企業級功能的堅實基礎,自動推論檢查、多代理合作和模型蒸餾技術協助客戶更快地將生成式 AI 從概念驗證推進到生產就緒
香港 - Media OutReach Newswire - 2024 年 12 月 9 日 - Amazon Web Services(AWS)在 2024 re:Invent 全球大會上,宣布推出 Amazon Bedrock 的多項創新功能。Amazon Bedrock 是 AWS 一項全託管的服務,旨在利用高性能基礎模型構建和擴展生成式人工智能(GenAI)應用程式。是次發布進一步彰顯 AWS 對模型選擇的承諾,同時優化大規模推論的執行方式,協助客戶透過數據創造更多價值。Amazon Bedrock 的全新功能也將協助客戶避免因模型幻覺(hallucination)造成的事實錯誤、協調多個 AI 驅動的代理以執行複雜任務,以及打造更小、特定任務導向的模型,以更低的成本和延遲提供與大型模型相近的效能。 - AWS 將成為首家提供 Luma AI 和 poolside 模型的雲端服務供應商。AWS 亦將在 Amazon Bedrock 加入 Stability AI 的最新模型,並透過全新的 Amazon Bedrock Marketplace 功能為客戶提供 100 多個熱門、新興及專業模型的存取權限,客戶可根據自身需要尋找最合適的模型組合。
- 全新的提示詞快取功能和 Amazon Bedrock Intelligent Prompt Routing功能協助客戶更輕鬆、更具成本效益地擴展推論工作。
- Amazon Bedrock Knowledge Bases 現已支援結構化數據及 GraphRAG,進一步拓展客戶利用自身數據提供客製化生成式 AI 體驗的途徑。
- Amazon Bedrock Data Automation 功能能夠在無需編寫程式碼的情況下,自動將非結構化、多模態的數據轉換為結構化數據,以協助客戶將更多數據應用於生成式 AI 及分析工作中。
- 數以萬計的客戶信賴 Amazon Bedrock 運行生成式 AI 應用程式,過去一年使用該服務的客戶數量增加 4.7 倍。Adobe、Argo Labs、BMW 集團、Octus、Symbeo、Tenovos 和 Zendesk 等企業均已採用 Amazon Bedrock 的最新技術。
- 自動推論檢查(Automated Reasoning checks)是首個也是唯一一個生成式 AI 安全防護機制,可協助防止因模型幻覺而產生的事實錯誤,開闢了對精確度要求極高的全新生成式 AI 應用案例。
- 客戶可以使用多代理合作輕鬆建構和協調多個 AI 代理以共同解決問題,進而擴展客戶在生成式 AI 的應用方式,應對最複雜的應用情況。
- 模型蒸餾技術使客戶能夠將特定知識從大型、高效能模型轉移到更小、更高效的模型,效率最高可提升 500%,成本最高可降低 75%。
- 目前已有數以萬計的客戶使用 Amazon Bedrock,Moody's、PwC 和 Robin AI 都正在運用這些新功能以具成本效益的方式擴展推論能力,並突破生成式AI創新的界限。
- Luma AI 的Ray 2:Luma AI 的多模態模型和軟件產品透過生成式 AI 推動影片內容創作。AWS 將成為首家向用戶提供 Luma AI 最先進的 Luma Ray 2 模型(其著名影片模型第二代)的雲端服務供應商。Ray 2 標誌著生成式 AI 輔助影片創作的重大進展,它能夠根據文本和圖片高效具電影質感的高品質逼真影片。用戶能快速試驗不同的拍攝角度和風格,拍攝角色連貫、物理效果精準的影片,為建築、時尚、電影、平面設計以及音樂等領域提供創意輸出。
- poolside 的malibu 和point:poolside 致力解決大型企業現代軟件工程面臨的挑戰。AWS 將成為首家提供 poolside 的 malibu 和 point 模型存取權限的雲端服務供應商,這兩個模型在程式生成、測試、文件製作以及即時程式碼補全方面表現出色。這有助提高工程團隊的生產力,更快地編寫出更優質的程式碼,並加速產品開發週期。這兩個模型還能在確保安全和私隱的前提下,根據客戶的程式碼庫、實踐操作以及文件進行微調,以配合特定專案的需要,協助客戶更精準且有效率地處理日常軟件工程的任務。此外,AWS 還將成為首家提供 poolside Assistant 存取權限的雲端服務供應商,該功能可以將 poolside 的 malibu 和 point 模型強大的功能融入開發人員首選的整合式開發環境(IDE)之中。
- Stability AI 的Stable Diffusion 3.5 Large:Stability AI 是視覺媒體領域的領先生成式 AI 模型開發商,在圖片、影片、3D和音訊方面擁有先進的模型。Amazon Bedrock 將新增 Stability AI 最先進的文字生成圖片模型 — Stable Diffusion 3.5 Large。該模型能夠依據各種風格的文本描述生成高質素的圖片,協助媒體、遊戲、廣告以及零售領域的客戶加速創建概念藝術、視覺效果以及詳細的產品圖片。
- 通過快取提示詞功能降低回應延遲和成本:Amazon Bedrock現已支援安全地快取提示詞,進而減少重複處理,且不會影響準確性。對於支援的模型,此功能可將成本降低最高 90%,並將延遲縮短最多 85%。例如,律師事務所可以開發一個生成式 AI 聊天應用程式,用於回答律師有關文件的問題。當多名律師在提示詞中詢問關於文檔同一部分的問題時,Amazon Bedrock 能夠快取該部分內容,使其只需要處理一次,之後每當有人想要詢問相關問題時,便可重複使用,透過減少模型每次需要處理的訊息量來降低成本。Adobe 的 Acrobat AI 助理藉此實現快速的文檔摘要和問答功能,提高了用戶的工作效率。根據初步測試,借助 Amazon Bedrock 上的提示詞快取功能,Adobe 發現回應時間縮短了 72%。
- Intelligent Prompt Routing 功能有助於優化回應品質和成本:借助此功能,客戶能設定 Amazon Bedrock 自動把提示詞分配至同一模型系列裡的不同基礎模型,以優化回應品質和成本。運用先進的提示詞配對和模型理解技術,Intelligent Prompt Routing 能夠預測每個請求對應的每個模型的效能,並將請求動態分配至最可能以最低成本提供所需回應的模型。Intelligent Prompt Routing 可在不影響準確性的情況下,將成本降低多達 30%。Argo Labs 為餐廳提供創新的語音客服解決方案,透過 Intelligent Prompt Routing 處理各類客戶諮詢和訂位業務。當客戶提出問題、下單以及訂位時,Argo Labs 的語音聊天機器人會動態地將查詢請求分配至最合適的模型,進而優化回應的成本和品質。例如「今晚這家餐廳有空位嗎?」這樣簡單的是非題,可以由較小的模型處理,而「這家餐廳提供哪些素食選項?」這類較複雜的問題則可由較大的模型來回答。借助 Intelligent Prompt Routing 功能,Argo Labs 能夠運用語音客服無縫處理客戶互動,同時達成準確性和成本之間的平衡。
- 支援結構化數據檢索功能以加速生成式 AI 應用程式開發:Knowledge Bases 提供了首批託管式、可立即使用的 RAG 解決方案,使客戶能夠直接查詢生成式 AI 應用程式中結構化數據的儲存位置。此功能有助於打破數據來源之間的數據孤島,將生成式 AI 開發週期從一個多月縮短至幾天。客戶能夠建構應用程式,讓應用程式運用自然語言查詢 Amazon SageMaker Lakehouse 和 Amazon S3 資料湖、Amazon Redshift 雲端資料倉儲等數據來源中的結構化數據。借助這項新功能,提示詞資訊會轉換為 SQL 查詢,用於檢索數據結果。Knowledge Bases 會根據客戶的架構和數據自動調整,從查詢模式中學習,並提供一系列客製化選項,進一步提高針對所選的應用情況的準確性。信用情報公司 Octus 將運用 Knowledge Bases 中全新的結構化數據檢索功能,讓最終用戶使用自然語言查詢結構化數據。透過將 Knowledge Bases 與 Octus 現有的主要數據管理系統相連,最終用戶的提示詞資訊能轉換為 SQL 查詢,讓 Amazon Bedrock 運用這些 SQL查詢檢索相關資訊,並作為應用程式回應的一部分回覆給用戶。這將協助 Octus 的聊天機器人向用戶提供精準的、由數據驅動的洞察,提升用戶與公司一系列數據產品之間的互動。
- 支援 GraphRAG 功能以生成更具相關性的回應:知識圖譜讓客戶透過將相關資訊映射成網狀結構,來針對數據間的關係進行建模和儲存。將這些知識圖譜融入 RAG 時會格外有用,系統可依據圖譜輕鬆審閱並檢索相關資訊片段。如今,由於支援 GraphRAG,Knowledge Bases 讓客戶無需具備圖形資料庫的專業知識,即可使用 Amazon Neptune 圖形資料庫服務自動生成知識圖譜,並跨數據連接實體之間的關係。Knowledge Bases能夠更便捷地生成更準確、更相關的回應,借助知識圖譜關連性,查看根源資訊以了解模型如何得出特定回應。BMW 集團將在旗下的 My AI Assistant(MAIA)使用 GraphRAG。MAIA 是一款AI驅動的虛擬助理,可幫助用戶尋找、了解並整合託管在 AWS上 的公司內部數據資產。借助由 Amazon Neptune 支援的 GraphRAG 自動化圖形建模功能,BMW 集團能夠依據資料使用情況,持續更新 MAIA 所需的知識圖譜,從數據資產中提供更相關且全面的分析,進而持續為數百萬車主傳遞優質體驗。
- AWS 新聞博客:了解公告的更多細節,包括Amazon Bedrock Marketplace、提示詞緩存和 Intelligent Prompt Routing、資料處理和檢索功能、自動推論檢查、多代理合作、模型蒸餾。
- Amazon Bedrock 頁面:深入了解 Amazon Bedrock 的功能和特性。
- Amazon Bedrock 客戶頁面:了解其他公司如何使用 Amazon Bedrock。
- AWS re:Invent 頁面:獲取關於 AWS re:Invent 活動的詳細資訊。
發佈者對本公告的內容承擔全部責任
關於 Amazon Web Services
自 2006 年來,Amazon Web Services 一直在提供世界上服務最豐富、應用廣泛的雲端服務。AWS為客戶提供超過 240 種功能全面的雲端服務,包括運算、儲存、數據庫、網絡、分析、機器學習與人工智能、物聯網、流動、安全、混合雲、媒體,以及應用開發、部署和管理等方面,遍及 34 個地理區域內的 108 個可用區域(Availability Zones),並已公布計畫在墨西哥、紐西蘭、沙特阿拉伯和泰國等建立 6 個 AWS 地理區域、18 個可用區域。AWS 的服務獲得全球超過百萬客戶的信任,包括發展迅速的初創公司、大型企業和政府機構。通過 AWS 的服務,客戶能夠有效強化自身基礎設施,提高營運上的彈性與應變能力,同時降低成本。欲了解更多有關 AWS 的資訊,請瀏覽:https://aws.amazon.com。
Source https://www.media-outreach.com/news/hong-kong-sar/2024/12/09/348280/